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Abstract. We study self-avoiding walks (SAWS) on the checkerboard (CB) family of fractals, each 
memberof which can be labelled by an odd integer b (3 < b c m), so that the fractal dimension 
dr tends to the Euclidean value 2 when b + m. By applying the exact renormalization-group 
method (forb = 3.5 and 7), and the Monte C d o  renormalization-group method (for a sequence 
of fractals with 5 < b < SI),  we have calculated the critical exponent y ,  associated with the 
total number of distinct SAWS. It turns aut that y .  being always I q e r  than the corresponding 
Euclidean value $,increases monotonically with b. In order to l e m  the asymptotic behaviour 
of y for large b. we hove applied the finite-size scaling (FSS) method (based on previous exact 
results for wedges of the two-dimensional Euclidean lattices), and thereby we have shown that 
y tends to from below, when b - m. Applying the same method (FSS), we have also 
demonsuated that the critical exponent Y, associated with the mean-squared end-to-end distance 
of SAWS, tends to the Euclidean value a from below. when b + m. The obtained resultc extend. 
and in a way weld together, the previous studies of SAWS on various families of finitely ramified 
fractals. 

1. Introduction 

The self-avoiding walk (SAW) on a lattice is a random walk whose path must not contain 
self-intersections. For a large number of steps i\r, the number of distinct SAWS (averaged 
over all possible starting points) is governed by the power law CN - pNNy- ' ,  where p 
is the connectivity constant, and y is the related critical exponent. In the case of SAWS on 
two-dimensional Euclidean lattices the value y = 2 [ I ]  has been recognized as a universal 
value, whereas in the case of fractal lattices (embedded in the two-dimensional Euclidean 
space) it has turned out that y can take a wide variety of values. Consequently, y has to be 
calculated for each new fractal studied. More interestingly, for two infinite fractal families 
embedded in the two-dimensional Euclidean space, i t  has been found [2,3] that when the 
fractal properties (the fractal df and spectral d, dimensions) approach the corresponding 
Euclidean values, y does not tend to g .  Thus, in the case of the Sierpinski gasket (SG) 
family of fractals, whose members are labelled by an integer b (2 < b < CO). the known 
values of y (for 2 < b < 80) increase monotonically with b [2], and the finite-size scaling 
(FSS) approach [4] revealed that y + when b --t CO. Similarly, in the case of the 
plane-filling (PF) family of fractals, whose members are enumerated by an odd integer b 
(3 < b < CO), the calculated values of y (for 3 < b < 121) also increase monotonically 
with b [3], and the FSS analysis [3] showed that y + when b + CO. Accordingly. one 
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may question whether the monotonic departure from the Euclidean value 2 is a general 
characteristic of y for SAWs on finitely ramified fractals. 

In this paper we study SAWs on the checkerboard (CB) family of fractals, whose members 
are finitely ramified and can be enumerated by the odd integer b (3 < b .= 00). The 
corresponding renormalization-group (RG) calculation of y is more intricate than in the SG 
and PF case. Nevertheless, we have succeeded in obtaining exact values of y for fractals 
with 3 < b < 7. To get y for larger b we have applied the Monte Carlo renormalization- 
group (MCRG) approach, and in this way we have reached all values of y up to b = 81 
(the evaluation of the last one, for b = 81, took 11 days of continuous work, as a solely 
processed job on a computer with the Intel 80860 microprocessor). In relation to the 
asymptotic behaviour of y for SAWs on the CB fractals. we have applied the FSS method, 
and thereby we have learnt that y --f % when b + M. Besides, to establish values of y 
for 3 < b < 81 it  was necessary to use results related to the critical exponent U (associated 
with the SAW end-to-end distance). These results for U (for finite b) were recently obtained 
via an exact and MCRG approach {5,6]. However. within the corresponding studies [5,6], 
the asymptotic behaviour of U (for large b)  was not established. In the course of the present 
work, we have been able to implement a specific Ess method and to learn that Y approaches 
the Euclidean value $, when b + 03, in the same way as in the case of the SG and PF 
families of fractals, that is. with the same correction term In In b j  In b. Consequently, as 
regards both the critical exponent y and U, one can say that this work makes complete 
a long series of studies of SAWs on the three (SG, PF, and CB) infinite families of finitely 
ramified fractals (previous results and the new results are compared and reviewed in  the 
discussion section of this paper). 

This paper is organized as follows. In section 2 we present the general framework of 
the RC method for studying SAWS on the CB fractals, in a way that should make the method 
transparent for exact calculations, as well as for the Monte Carlo (MC) calculations, of the 
SAW critical exponents. In section 3 we give specific results for the critical exponent y for 
a sequence of the CB fractals with 3 < b < 81, while in section 4 we apply the FSS method 
to learn asymptotic behaviour of y (and U) for large b. Discussion of the obtained results 
and their relevance to the current knowledge of statistics of SAWs on fractals are given i n  
section 5. Finally, in the appendix we provide details of the RG analysis which were not 
expounded in seciton 2. 

S MiloSeviC and I i i v i f  

2. Framework of the renormalization-group calcuIatioo of the critical exponent 7 

The RG calculation of y for SAWs on the CB fractals is, in principle, similar to the previous 
applications of the RG method to the studies of SAWS on other families of finitely ramified 
fractals. However, the implementation of the RG method for the CB fractals is more complex 
and requires additional elucidation. Before going into requisite details, we shall briefly 
describe the structure of the CB fractals, as well as the closely related family of the X 
fractals. Each member of the plane CB and X family is labelled by an odd integer b > 3 
and can be obtained as the result of an infinite iterative process of successive (r + r + I )  
enlarging the fractal structure b times and substituting the smallest parts of the enlarged 
structure with the generator (initial structure, r = 1). The generator of a CB fractal is a 
square, of size b x b, composed of b rows of unit squares, so that within each row and each 
column every other of them is removed, whereas in the case of X fractals instead of unit 
squares we put crosses composed of squares’ diagonals (see, for instance, figure I of [SI, 
and figure I of 161). Guided by the self-similar way of the construction of the fractals, one 
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where the coefficients a and b (except bf, bf,, and b;, which are always equal to zero) are 
polynomials in F(') ,  @'), and I$'). All these functions. together with the corresponding 
initial conditions (expressed in terms of the fugacity x [5 ] ) .  are necessary to construct the 
generating function C ( x )  = Cy=l CNX', whose singular behaviour at the critical fugacity 
x *  = 1/p is described by the critical exponent y (in accordance with the assumption that 
the number of all possible walks of N steps is governed by the power law CN - f i N N Y - I ) .  

It can be verified that C(x)  is of the form 

S MiloSer'iC and / &vi6 

+ prL'" + pwhf'" f poo"' + p,vNCr'] ( 5 )  

where the coefficients p are also polynomials in F'", G'" and H").  The above form for 
C(x)  springs from the fact that all possible SAW paths, within the (r + 1)th-order fractal 
structure, can be made in ten different ways. This form shows that the behaviour of C ( x ) ,  
in the vicinity of x ' ,  depends on the corresponding behaviour of the restricted partition 
functions. Assuming that the singular behaviour of (5) is of the form C(x)  - (x" - x) - " ,  
it can be shown that the following relation holds: 

In (2A:/(bz + 1)) 
lnhl Y =  

where Xz is the largest eigenvalue of the 3 x 3 matrix formed of the coefficients a* (which 
appear in the RC transformations (3)) evaluated at the non-trivial fixed point of the RC 
transformations (I), that is, hz is the solution of the equation 

To verify (6), an intricate analysis is necessary, and we present the relevant details in the 
appendix. Here we note that to learn specific values of y ,  for particular members of the 
CB fractal.family, one needs to calculate hz (values of hl have already been found for a set 
3 < b < 81 [5 ,6 ] ) .  

3. Exact and MCRG results for y 

An exact calculation of y requires knowledge of coefficients of polynomials a which appear 
in (3). They can  be calculated by enumerating the entire set of possible SAWS which are 
described by the restricted partition functions JCr1, and K ( r )  (see figure 1 ) .  We have 
found that this enumeration is feasible in the case b = 3,5 and 7. More precisely, forb  = 3 
the enumeration can be done straightfonvardly. whereas for b = 5 and 7 it necessitated a 
computer facility (which produced very large sets of data, which are available upon request 
from the authors). The values obtained for y are given in table I .  

For a sequence of b 2 9, the exact determination of polynomials a cannot be reached 
using present-day computers. However, to calculate h? one does not need a complete 
knowledge of polynomials a (that is, one does not need to know all their coefficients). In 
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Table 1. The exact (b = 3.5, and 7) and the MCRG (5 C b < 81) res& for the RC eigenvalue A2 

and the SAW criticol exponent y .  To make the table complete we quote values of A I  (and U) [6] 
t h a  were used in formula (6) to calculate y .  Results are the $ m e  for rhe CB and X fractals for 
all b. except for the b = 3 c s e .  As regards the exact RC and MCRC findings, we c m  comment 
that the results forb  = 5 and b = 7 indicate lhot the deviation is not Iwger than 0.1 1%. 

NO Of MC ” b simulation .\I A2 Y 

3 Exact (CB) 3 5.1213 I 1.5086 

5 

7 

9 

I1 
13 
15 
19 
23 
25 
27 
35 
43 
51 
61 
71 
81 

Emcl (X) 3 
Exad 6.6105 
s x  105 6.61 f 0.04 
Exact 10.8869 
5 x 105 10.87 i 0.06 
EXXt 15.8172 
5 x 105 15.81 iO.09 
5 x 10’ 21.3 i 0.1 
5 x I05 27.3 i 0.1 
5 x 10s 33.9 i 0.2 
5 Y 10s 48.2 i 0.2 
5 x 105 64.5 i 0.3 
5 x I O 5  73.1 i 0.4 
5 105 82.2 f 0.4 
5 105 120.3 i 0.6 
5 x 105 164.1 i 0.7 
5x105 212f 1 
5 x  IO’ 275 f 1 
5 x 105 3461  1 
5 x 105 420 f 2 

5 
15.4410 
15.5f0.1 
34.7817 
34.7 i 0.4 

6 5 i 1  
1 1 o i 2  
1 6 9 i 5  
249 i 8 
480 i 20 
850 i 50 

1040*60 
I400 f 100 
2 800 f 400 
5400*700 
9 000 f 2000 

14 000 4000 
23 000 i 4000 
40000f10000 

- 

1 
0.85235 
0.852 16f0.00304 
0.81502 
0.81552f0.00199 
0.79578 
0.79594 * 0.001 67 
0.783 38 k 0.001 42 
0.775 32 i 0.001 24 
0.76850 +0.001 15 
0.75980f0,00098 
0.75261 i 0.00092 
0.75002 f 0.00086 
0.74756 f 0.00084 
0.74221 i 0.00082 
0.73742 i 0.00060 
0.73371 f 0.00079 
0.731 96 * 0.00067 
0.729 10 f 0.00050 
0.72765 f 0.00056 

1.4650 
1.5403 
1.542f0.016 
1.6248 
1.623 f 0.014 

1.677i0.016 
1.726&0.017 
1.759 f 0.019 
1.791 i0.021 
1.843 f 0.024 
1.901 f0.031 
1.899 f 0.030 
1.936 f 0.036 
1.9721 0.057 
2.030 f 0.050 
2.064 * 0.103 
2.054 i 0.102 
2.090 f 0.065 
2.143 f 0.102 

- 

fact, to obtain 12, one only needs values of these polynomials at the fixed point (see (7)). 
On the other hand, the polynomials which appear in (3) can be conceived as grand partition 
functions of appropriate ensembles, and consequently, within the MCRG method [Z, 31, the 
requisite values of polynomials can be determined directly. Details of the way to ascertain 
values of a are quite similar to the way applied previously [Z, 31, and here we will not 
elaborate on it further. In table 1 we present our findings for y and A? for a sequence of 
the CB fractals (5 < b < 81). From the table, it follows that y ,  being always larger than 
$, increases monotonically with b (in the interval studied). Therefore, one may ask what 
happens for b > 81, and, in particular, what happens in the case b + 00, when the CB 
fractal dimension approaches the Euclidean value 2. We investigate the matter related to 
this question in the next section. 

4. The finite-size scaling analysis 

If we want to know the behaviour of y for large values of b, we cannot avoid having to 
find out the asymptotic behaviour of v .  Indeed, according to (6), in order to determine y 
we need to study both 1, and 12 when b + 00, which we are going to do. But, knowing 
the behaviour of A,, one can learn the behaviour of v through (2). 

We start with an analysis of the RG transformations (1) for large b. First, we observe 
that it was established 161 that the probability of the H type of SAW (see figure 1) vanishes 
for large b, which means that the function H‘” can be neglected. For the remaining two 
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functions, we write the following short expressions: 

The new quantities should measure closeness to the fixed point (FL, Gk) which is pertinent 
to the case b + 03 (the corresponding critical fugacity we denote by xf). For the sake of 
simplicity, we shall omit the superscript r in writing the quantities E F  and E G .  To assess 
the asymptotic behaviour of (8) and (9), i t  is useful to recall their analogy with the corner- 
spinxorner-spin correlation functions (see figure 1) of the n-vector model (for n = 0). For 
this reason we assume, in the spirit of the FSS method [4], the two scaling forms 

which should be valid for large b and small E F  and tc. Here K F  and KG are constants, while 
J I F  and QG are the scaling functions. The quantity a is the critical exponent which governs 
the power-law decay of the correlation functions with distance. For large b, assuming the 
case of a wedge of the Euclidean square lattice with opening angle (Y equal to a / 2 ,  one 
may accept 

a = ?  2 (14) 

which can be inferred from the previous studies of SAWS on the Euclidean lattices’ wedges 
17,81. 

The scaling functions $.P and QC are not known for arbitrary b. However, it is possible 
to deduce their forms for large b. Actually, for large b the inequality x; > x; holds 
(because the lattice connectivity increases with increasing b). For x > x&, the functions 
F(‘+’) and G(‘+’),  given by (12) and (13), should vary as exp(b*) [9] ,  which implies the 
following form for the scaling functions: 

where Ki (i = I ,  2 , 3  and 4) are some constants. Knowing the last two expressions, we 
proceed to find the fixed point of the RG transformations (12) and (13). To this end, we 
combine the latter two with (IO) and ( l l ) ,  which yields 
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Inserting (15) and (16) in the above two formulae (with y ;  = $bi/” and y ;  = c;bl/”) we 
find 

E ;  % (QFalnb)liz’b-’/” 
E ;  M (QG a In b)l~z’b-‘’y 

where QP = (K4 - K 2 ) / ( K I K q  - K2K3) and QO = (KI - K,)/(KIK4 - KzK3). The 
requisite eigenvalue h l  should be determined by solving the equation 

where the asterisk means that all derivatives should be taken at the fixed point given by 
(19) and (20). Thus we find 

h i  (b) % Qb””(a In b)‘2”-1)’2” (22) 

where Q is a constant. Using (2) and (22) we get the formula for the critical exponent 

3 3 1nInb 
4 16 In6  

”(b) = - - -- 
which is asymptotically correct for large b. One can notice that v acquires the Euclidean 
value for b + CO (with the negative first correction term). This result was anticipated 
in [6], on the grounds of predictions given in 141. In fact, one could have reached the 
same result (23) in an easier way, that is, by assuming that the scaling functions (15) and 
(16) are equal, which would make the whole approach identical to the approach of [4]. 
However, such an assumption would imply that the coefficients Ab( i ,  j .  k )  and &(i, j ,  k )  
which appear in (1) are mutually proportional (for large b), which at the present stage lacks 
numerical and physical evidence. Anyhow, we can now conclude that v has the same type 
of behaviour for the three different (SG, PF, and CB) families of fractals. 

We proceed to find asymptotic behaviour of the critical exponent y .  For this purpose, 
we first need to determine asymptotic behaviour for the eigenvalue hz, which should be 
accomplished by solving (7) for large b. In the case of large 6,  it is known [4,8, IO] that 
the threeleg vertex partition functions J ( ‘ )  and K(‘) can be neglected in comparison with 
the one-leg vertex partition function I ( ‘ ) ,  on which grounds (7) can be reduced to 

Az(b) * a,,(F$’, G:. 6) . (24) 

In the spirit of the FSS approach, and in the analogy with (12) and (13), we assume 

a,l(F&exp(cp), GLexp(cc), b)  KbCexp(llr,(+b‘/”, ccb””)) (25) 

where K is a constant, c is an appropriate critical exponent, and is the scaling function, 
The specific value of c can be determined by an analysis of the polynomial a / /  as a function 
of the fugacity x .  For x < xf (that is, for E F  < 0 and EO < 0) the polynomial all diverges 
according to the power law 

(26) 
4 1 / 6 4  

a / /  - (xL - x )  
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which springs from the study 171 of SAWS confined in the Euclidean wedges (taking into 
account that in  the case under study the opening angle 01 is j7/2). ?he scaling assumption 
(25), in conjunction with the power law (26), can be valid if 

$u(6Fb1/". cGbl") = -2 I n  (cFbl/" + 6Gb"") 

S Milofeuid and I X'viC 

(27 ) 

and accordingly 

c=31  48 . (28) 

In the next step, we analyse a,/ for x > x& (for the densed phase) so as to learn lz(b) 
for large b. In this case the ratio of u/,/F('+') should be a definite function of b [4,8]. 
More specifically, one can expect 

where the exponent w depends on the opening angle 01 of the Euclidean wedge, and h is a 
function which does not depend of b. For 01 = 3112. following the work of Duplantier and 
Saleur [SI, we have found 

16 . 

On the other hand, (29) together with (12) and (25) imply 

(30 (0J-n-C)" + c2Yp--.-c)Y) 
$ah(~F,  Y G )  - $ F ( Y F >  Y C )  = In(CtYF 

where CI and C2 are constants, Hence, for the fixed-point values (19) and (20) we get 

Finally, using (6),  (22) and (32), we obtain 

(33) 
Inlnb 

y(b) = 2v(a + c + 1) + U (o - a - c - ( Z U  - I)(a + c - 1)) - 
In b 

and, using the specific findings, we reach the asymptotic expression 

103 219lnlnb 
32 I28 lnb  

y(b) = - - -- (34) 

which shows the non-Euclidean value (g versus $) for the critical exponent y in the 
limit b -+ 00, when the fractal dimension df acquires the Euclidean value 2. 
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Figure 2. The exact (open squares) and MCRG (full .qunres) resuls for the critical exponent y 
of SAWS on the CB fractals (the mark x denotes the b = 3 exact value for the X fnclal). The 
horizontal broken line EpreSentS the Euclidean value y = $. This figure vividly demonsunres 
that the data from table 1 increases monotonically with b. always being larger than the Euclidean 
value $ In addition, one can see that it would be nther difficult to extrapolate straightforwardly 
the existing data to the asymptotic value % (for b --f m) which has been obtained by an 
independent theoreocd method (see Section 4). 

5. Discussion and conclusions 

The initial objective of this work was to obtain values for the critical exponent y of SAWS 
on the fractals which belong to the CB and X families of fractals. This objective has been 
accomplished by applying the exact RG method for the first three members (6 = 3 .5  and 
7) of the families, and by applying the MCRG method for a set of fractals with 5 < b < 81. 
The results obtained are given in table I ,  and here we depict y a function of I l b  in 
figure 2. One can observe that y, being always larger that the Euclidean value 8, increases 
monotonically with b, and onemay wonder what happens for 6 > 81. We have answered this 
question via the FSS approach, which led us to the conclusion that y + $ when b + w 
(see formula (34)). Very similar behaviour of y ,  and the same limiting value of s, has 
been found in  the case of the PF family of fractals [3]. This equality of the limiting values 
should not be surprising since in both cases the 6 = 00 fractal can be related to the wedge 
of the square lattice with the opening angle (Y = n/2 17, IO]. Incidentally, results for the PF 
fractals show that one can hardly expect a well defined function of dimension (exclusively) 
which interpolates results for critical exponents of SAWS on the Euclidean lattices and on 
fractal lattices [ I  I], In fact. all PF fractals (with the odd integer enumerator 3 < 6 c 00) 

have the same fractal dimension df = 2 and separate values of y (and U) for each b. 
In fulfilling our task of calculating y we have found it possible to answer the appealing 

question [6 ]  about the large-6 behaviour of the critical exponent U for the CB fractals. Within 
the framework of the FSS approach, we have been able to learn that U tends to the Euclidean 
value 2 from below, when 6 --f w (see formula (23)). This finding, together with the 



7748 S MiloSeuiC and I %vir 

iT- 
1W. 

r 
I . as- 

. . . . . . . .. . 

0 2 3 * 5 
In b 

Figure 3. The graphicd representation of 
the results given in table I, depicted so as 
to disclose that q / b 4  should be a line% 
function of Inb for large b. 

previous results for U (in the interval 3 < b < 81) [6], which showed that U decreases 
monotonically (passing through the value a at b % E),  imply that U. as a function of b, 
should have a minimum at some finite b > 81. Therefore, although the results for finite b 
and the b -+ 03 prediction are obtained theoretically by different approaches, we can try to 
locate the position of the minimum using (22), according to which A:/b4 should be a linear 
function of In b, for large b. Indeed, the corresponding plot of our data (see table 1) gives 
the graph presented in figure 3, from which one can notice that the linear behaviour can be 
expected for b > 27. Therefore, making the least-squares fit to our data for b > 27, we 
have found A:/b4 = 0.65675lnb - 1.17595, which upon inserting in (2) brings about an 
approximate function u(b) with the minimum udn = 0.71835 located at b d n  1750. This 
estimate for bd. is of the same order of magnitude as the one bdn % 1800 found, using 
phenomenological formulae for U ,  in the case of the PF fractals [3]. These values of b are 
beyond the reach of the MCRG method (implemented on present-day computers) and further 
analysis of the location of udn requires new insights. 

We have already pointed out that this work completes and welds together a set of related 
studies [2-6,12,13] of SAWS on four different families of fractals, and in this spirit we can 
offer the following conclusions. The critical exponent y turns out to be always larger 
than the Euclidean value 2, and, as a function of the fractal scaling factor b, increases 
monotonically with b. In the case of the SG family of fractals y -+ !$ when b -+ 00, 

whereas for the other three families (PF, CB, and X) y + 3 when b + 03. On the contrary, 
the critical exponent U, for all four families of fractals, tends to the Euclidean value (from 
below), when the fractal dimensions approach the Euclidean value 2 ,  that is, in the limit 
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b + CO. Besides, in all four cases w is a non-monotonic function of b, so that it crosses the 
Euclidean value for a finite hh uy 26 [6], which appears to be the first universal element 
in the critical behaviour of SAWS on fractals. From the practical point of view, this means 
that there is a borderline in the homogeneity of fractals (embedded in the two-dimensional 
Euclidean space), such that for less homogeneous fractals w is larger than the Euclidean 
value $, while for more homogeneous fractals w lies below 9 .  The first possibility, U a i, 
seems to be widely accepted, whereas the second, U < t, is less appreciated, although i t  
has been observed in other investigations, both numerically [I41 and experimentally [15]. 
The particular position of the apparently universal borderline, bi, = 26, is enhanced by the 
results reported in the present work. Indeed, one can notice, upon comparison with the 
results found previously [2,3], that for b > 25 (and up to b = 81) y acquires values that 
are, within the error bars, almost the same for the four families of fractals. 
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Appendix. 

Here we present an analysis that in its final stage vindicates the central formula (6). We 
start with examining the singular behaviour of the generating function (5) for the values 
x = x* - 6, where 6 is a small positive number. To this end we linearize the RG 

transformations (1) at the non-trivial fixed point 

--- 
a p l  a@) a ~ ( ' )  

a p + i )  a ~ ( , + i )  a H r r t i )  

aF'" a@" 8f.f") 
--- 

which can be written in the condensed form 

(AT 

We assume that the vicinity of the fixed point is reflected in the smallness of the U(') 
intensity 

= jUO) , 

)21(')1 ,< E << 1 . (A3) 

Assuming that el is the eigenvector associated with the largest eigenvalue hl of 
the matrix i, we shall make the approximation U(') N cx(r.S)el, so that (A2) implies 
u(r, 6 )  = h;u(O. 6 )  and 

U(') N ol(0,6)h;el (A41 
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Figure A l .  The schem3tic W m c n t  th3t the statistical weight of SAWS of the type O"+'). 
which contain the lower-level walks of the type Oi'), is smaller than the Statistical weight of 
those walks which stem from the SAWS of  the rype H " t l )  by splitting the HV1 walks. that is, 
bgl. c i )H l f t l ) / i lH [ ' ) .  Theargument invokesthe factlh3tthe OV") walks of interestcan be 
obtained from a subsel of all w o k  of the type H(r t t l  which contain the HV)  walks. Finally, 
one should observe that there are splitlings of the Hi'' walks (the A we) which contribute 
to the O'r+ll set, and tha there 3ce those (the B me) which do not make lhe nppropriate 
contribution. 

where or(0,J) is proportional to S. that is, a(0,J) - (x' - x ) .  The requirement that (A3) 
and the relation (A4) can be valid for r < ro, where ro is given by 

In E' 
ro = - 

In A1 

with E' being equal to E / I Y ( O .  8). Knowing the counter value ro, we can proceed further by 
calculating all polynomials which appear in (3) and (4), at the fixed point ( F ' ,  C*, H*) for 
r < ro, and at the trivial fixed point (O,O,O) for r > ro. 

On the grounds of the foregoing conclusion, we split our analysis of the recursion 
relations (3)-(5) into two parts. For r < ro, equation (3) becomes 

whose solution we search in the form 

I") 2 K / h ;  .I(') z KIA;  K(')  1 K K A ;  (A91 

where K,,  K J ,  and K K ,  are some constants, while hz is the largest solution of (7). If the 
solutions of the type (A9) exist, relation (4). for Y = 0, takes the form 

O!') K' (hi)r + K M  (bool,)' (AI@ 

where K' and K" are also constants. The value of bgl. is smaller than aH"+"/aH'" (see 
figure AI). On the other hand, in the course of our work numerical evidence has been 
acquired that 8 H ( ' + 1 ) / ~ H ( ' )  < Ai, so that, for large r ,  (AIO) reduces to 

0"' 1 KOA:. ( A l l )  
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In the same spirit, certain coefficients in the recursion relations that follow from (4), upon 
inserting (A6)-(A8) and (AI 1). can be related to the partial derivatives of the partition 
functions ( I ) ,  yielding 

( A W  v('+l) h$k + eu(r) 

where u(') is the vector column comprised of L('), M('), and A'('), while k is also the vector 
column whose elements are K L ,  Kw.  and K N ,  and, finally, is the matrix 

( A 1 3  
1 a ~ ( r + l )  1 aH(r+l) a ~ ( r + l )  _ _ _  -- ~ 

2 a ~ ( ' J  2 a @ )  8 ~ " )  

The matrix ?' has the same eigenvalues as the matrix ?, which means that in (A12) we can 
neglect the second term (because hl <: hi ; see table 1). Consequently, for r < ro, we can 
write 

( ~ 1 4 )  L(') K1 A? M") KzhY N") 'v KshF 

where K I ,  K?, and K3, are constants. In this way we have completed the analysis of the 
RG transformations for r < ro. 

For r > ro, the set of the RG transformations becomes simplified 

I"' Y KjhT L(r) = K L h T  M(') = KM@ 
J ( r )  = K(')  = ( ~ 1 5 )  

= ~ ( r )  rr 0 

due to the fact that only the polynomials all, bfl, and b:, which appear in (3) and (4), 
have non-zero constant terms. In the end, we insert (A9), (AI I). (A14) and (AIS), into (S), 
and retaining the largest term of the sum we obtain 

ru 

C ( x )  - (3) b2 + 1 

which together with (As) gives (6), 
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