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Abstract. We study self-avoiding walks (Saws) on the checkerboard {cB) family of fractals, each
member of which can be [abelled by an odd integer & (3 € & < 00), so that the fractal dimension
dr tends to the Euclidean value 2 when b — oco. By applying the exact renormalization-group
methed (for &b = 3, 5 and 7), and the Monte Carlo repormalization-group method (for a sequence
of fractals with 5 € & € 81), we have calculated the critical exponent y, associated with the
total number of distinct SAws. It turns out that ¥, being always larger than the corresponding
Euclidean value ‘3%, increases monotonically with &. Int order to learn the asymptotic behaviour
of y for large b, we have applied the finite-size scaling {Fss} method (based on previous exact
results for wedges of the two-dimensional Euclidean lattices), and thereby we have shown that
y tends to -l% from below, when & — oo, Applying the same method (F5s), we have also
demonstrated that the critical exponent v, associated with the mean-squared end-to-end distance
of $aws, tends to the Euclidean value % from below, when & = oo. The obtained results extend,
and in a way weld together, the previous studies of SAWs on various families of finitely ramified

fractals.

1. Introduction

The self-avoiding walk (SAW) on a lattice is a random walk whose path must not contain
self-intersections. For a large number of steps /, the number of distinct SAWs (averaged
over all possible starting points) is governed by the power law Cy ~ u¥ N7~ where u
is the connectivity constant, and y is the related critical exponent. In the case of SAWs on
two-dimensional Euclidean lattices the value y = ;% [1] has been recognized as a universal
value, whereas in the case of fractal lattices (embedded in the two-dimensional Euclidean
space) it has turned out that ¥ can take a wide variety of values. Consequently,  has to be
calculated for each new fractal studied. More interestingly, for two infinite fracta] families
embedded in the two-dimensiopal Euclidean space, it has been found [2, 3] that when the
fractal properties (the fractal ¢ and spectral ¢; dimensions) approach the corresponding
Euclidean values, y does not tend to %. Thus, in the case of the Sierpinski gasket (8G)
family of fractals, whose members are labeiled by an integer b (2 € & < 00), the known
values of y (for 2 £ & < B0) increase monotonically with b [2], and the finite-size scaling
(Fss) approach [4] revealed that y — % when b — oo, Similarly, in the case of the
plane-filling (PF) family of fractals, whose members are enumerated by an odd integer b
(3 £ b < o0), the calculated values of ¥ (for 3 £ & € 121) also increase monotonically

with & [3], and the Fss analysis [3] showed that y — ‘& when 5 — oco. Accordingly, one
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may question whether the monotonic departure from the Euclidean value % is a general
characteristic of y for Saws on finitely ramified fractals.

In this paper we study SAWs on the checkerboard (CB) family of fractals, whose members
are finitely ramified and can be enumerated by the odd integer & (3 €< » < o). The
corresponding renormalization-group (RG) calculation of y is more intricate than in the $G
and PF case. Nevertheless, we have succeeded in obtaining exact values of ¥ for fractals
with 3 € b ¢ 7. To get y for larger & we have applied the Monte Carlo renormalization-
group (MCRG) approach, and in this way we have reached all values of ¥ up to b = 81
{the evaluation of the last one, for b = 81, took 11 days of continuous work, as a solely
pracessed job on a computer with the Intel 80860 microprocessor). In relation to the
asymptotic behaviour of y for SAws on the CB fractals, we have applied the FSS method,
and thereby we have learnt that y — ‘3—? when & — oo, Besides, to establish values of y
for 3 < b < 81 it was necessary to use results related to the critical exponent v (associated
with the saw end-to-end distance). These results for v (for finite &) were recently obtained
via an exact and MCRG approach [5,6]. However, within the corresponding studies {3, 6],
the asymptotic behaviour of v (for large &) was not established. In the course of the present
work, we have been able to implement a specific FSS method and to learn that v approaches
the Euclidean value %, when & — oo, in the same way as in the case of the $G and FF
families of fractals, that is, with the same correction term Inlné/Inb. Consequently, as
regards both the critical exponent ¥ and v, one can say that this work makes complete
a long series of studies of SAWs on the three (SG, PF, and CB) infinite families of finitely
ramified fractals (previous results and the new results are compared and reviewed in the
discussion section of this paper).

This paper is organized as follows. In section 2 we present the general framework of
the RG method for studying SAWs on the ¢B fractals, in a way that should make the method
transparent for exact calculations, as well as for the Monte Carlo (MC) calculations, of the
SAW critical exponents. In section 3 we give specific results for the critical exponent ¥ for
a sequence of the CB fractals with 3 £ & « 81, while in section 4 we apply the F55 method
to learn asymptotic behaviour of y (and v) for large &. Discussion of the obtained results
and their relevance to the current knowledge of statistics of SAWs on fractals are given in
section 5. Finally, in the appendix we provide details of the RG analysis which were not
expounded in seciton 2.

2. Framework of the renormalization-group calculation of the critical exponent

The RG calculation of y for SAWs on the CB fractals is, in principle, similar to the previous
applications of the RG method to the studies of SAWs on other families of finitely ramified
fractals. However, the implementation of the RG method for the CB fractals is more complex
and requires additional elucidation. Before going into requisite details, we shall briefly
describe the structure of the CB fractals, as well as the closely related family of the X
fractals. Each member of the plane CB and X family is labelled by an odd integer & 2 3
and can be obtained as the result of an infinite iterative process of successive (r — r + 1)
enlarging the fractal structure b times and substituting the smallest parts of the enlarged
structure with the generator (initial structure, r = 1). The generator of a CB fractal is a
square, of size b x b, composed of & rows of unit squares, so that within each row and each
column every other of them is removed, whereas in the case of X fractals instead of unit
squares we put crosses composed of squares’ diagonals (see, for instance, figure 1 of [5],
and figure 1 of [6]). Guided by the self-similar way of the construction of the fractals, one
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Figure 1. Schematic representation of the ten restricted partition functions {for an rth stage
fractal construction) used in the calculation of the saw critical exponent 3, The interior structure
of the rth-order fractal triangle is not shown (its presence is represented by the wiggles of the
SAW paths).

can easily show that the fractal dimension d; for an arbitrary CB fractal (as well as for X),
specified by b, is equal to In[(5% + 1)/2]/In b (whereupon, one can observe that d; tends to
2 when b - o).

In order to study the number of all possible SAws on the CB (X) fractals, it is necessary to
introduce ten restricted partition functions (see figure 1). The first three restricted partition
functions, that is, F*, G, and H"?, comprise a RG which allows one to find the end-
to-end distance critical exponent v [5,6]. The corresponding RG transformations are the
recursion relations of the polynomial type

Fr+l — Z Ap(, f, k)F(f]iG(f)jH(r)k

LS.k

GoHD = 3 By, j, F GO O )
ijk

H{r+1) — Cpli, 7, )r‘:)];'(r)‘c;(r)fH(r)’L
%

which gives the critical exponent

D = Inb 2
- Iﬂ)\.g (

where X, is the largest eigenvalue of the RG transformations linearized at the non-trivial

fixed point.
The additional seven restricted partition functions satisfy the following set of recursion

relations;

XD =y 19 4 ax  JO +axg KO X=1JK (3)

Yo = bt (10V 4 Y 100 L L IO KO 4 pY, (IO 187, SR 4 pY (K
+ BV L 4+ bl MY + b N + 5L 0 Y=L,M,N,O (4)
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where the coefficients @ and b (except 69, b7, and 5%, which are always equal to zero) are
polynomials in F, G, and H“). All these functions, together with the corresponding
initial conditions (expressed in terms of the fugacity x [5]), are necessary to construct the
generating function C(x) = Y %, Cyx", whose singular behaviour at the ecritical fugacity
x* = 1/u is described by the critical exponent ¥ (in accordance with the assumption that
the number of all possible walks of N steps is governed by the power law Cy ~ pNNV—H),
It can be verified that C(x) is of the form

00 ) r4d
Cplx) = Z (b2 I 1) {Pfr(f('))z + IO g KD

r=0
+ prs(F 4 prkd KO 1 pri (KDY
+pe L+ puM® + po 0 + pyN© (5)

where the coefficients p are also polynomials in F), G and H**, The above form for
C(x) springs from the fact that all possible AW paths, within the (r + 1)th-order fractal
structure, can be made in ten different ways. This form shows that the behaviour of C{x),
in the vicinity of x*, depends on the corresponding behaviour of the restricted partition
functions. Asswming that the singular behaviour of (5) is of the form C(x) ~ (x* — x)77,
it can be shown that the following relation holds:

_ {23/ + 1))

In A] (6)

where A; is the largest eigenvalue of the 3 x 3 matrix formed of the coefficients a* {which
appear in the RG transformations (3)) evaluated at the non-trivial fixed point of the RG
transformations (1), that is, A, is the solution of the equation

(a?] —A3) a?.} a?if
L] *
ak; Ok s (agx — A2)

To verify (6), an intricate analysis is necessary, and we present the relevant details in the
appendix. Here we note that to learn specific values of y, for particular members of the
CB fractal family, one needs to calculate X3 (values of A have already been found for a set
3 < b <81 (56]).

3. Exact and MCRG results for v

An exact calculation of y requires knowledge of coefficients of polynomials a which appear
in (3). They can be calculated by enumerating the entire set of possible $aAws which are
described by the restricted partition functions 7}, J©1 and K(r) (see figure 1). We have
found that this enumeration is feasible in the case b = 3, 5 and 7. More precisely, ford =3
the enumeration can be done straightforwardly, whereas for & = 5 and 7 it necessitated a
computer facility (which produced very large sets of data, which are available upon request
from the authors). The values obtained for ¥ are given in table 1.

For a sequence of & 2 9, the exact determination of polynomials & cannot be reached
using present-day computers. However, to calculate A, one does not need a complete
knowledge of polynomials a (that is, one does not need to know all their coefficients). In
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Table 1. The exact (b = 3, 5, and 7} and the MCRG (5 € & < 81) results for the RG gigenvalue Az
and the saw critical exponent y. To make the table complete we quote values of A (and v) [6]
that were used in formula {6) to calculate . Results are the same for the ¢s and X fractals for
all &, except for the b = 3 case. As regards the gxact RG and MCRG findings, we can comment
that the results for & = 5 and b = 7 indicate that the deviation is not larger than 0.1£%.

No of MC
b simulation X1 Py} v ¥
3 Exact {CB) 3 5.1213 1 1.5086
Exact (X) 3 5 1 1.4650
5 Exact 6.6105 154410 0.85235 1.5403
§x 107 6.61 40,04 i1554£0.1 0.852 16 - 0.003 04 1.542 £ 0.016
7 Exact 10.8869 347817 0.81502 1.6248
5 % 10% 10.87 £ 0.06 347104 0.81552 £ 0.00199 1.623 4 0.014
9 Exact 158172 — 0.79578 —
5 % 10° 15.81 4+ 0.09 65+1 0.79594 £ 0.001 67 [.677 £ 0.016
11 3% 10° 213+£0.1 1102 0.78338 & 0.00142 1.726 1 0.017
13 5% 10° 273401 169+ 35 0.77532 £ 000124 1.759 £ 0.019
15 5x 100 33902 349+ 38 0.76850 + 0.00) 15 1.791 £ 0.021
19 5% 10° 482 1+0.2 480 + 20 0.75980 :£ 000098 1.843 & 0.024
23 5% 10° 645+ 0.3 850 £ 50 0.75261 £ 0.00092 1.901 & 0.031
25 5x 107 731 +04 1040 £ &0 0.75002 & 0.00086 1.899 & 0.030
27 5 % 107 822404 1400 % 100 0.747 56 &+ 0.00084 1.936 & 0.036
35 5% 108 12031206 2800 £ 400 0.74221 £ 0.00082 1.972 4 0.057
43 3 x 167 164.1+0.7 5400 £ 700 0,737 42 £ 0.00060 2.030 % 0.050
51 5% 105 21241 9 000 % 2000 0.73371 £0.00079 2.064 :0.103
61 5 x [0 27541 14000 + 4000 0.73196 £ (.00067 20544 0.102
i 5 x 105 3641 23000 £ 4000 0.729 10 £ 0.000 50 2.090 4 0.065
8l 5 x i0° 42042 40000 = 10000 0.727 65 £ (6,000 56 2.143 4+ 0.102

fact, to obtain A2, one only needs values of these polynomials at the fixed point (see (7).
On the other hand, the polynomials which appear in (3) can be conceived as grand partition
functions of appropriate ensembles, and consequently, within the MCRG method [2, 3], the
reguisite values of polynomials can be determined directly. Details of the way to ascertain
values of a are quite similar to the way applied previously [2,3], and here we will not
elaborate on it further. In table 1 we present our findings for ¢ and A, for a sequence of
the CB fractals (5 < & £ 81). From the table, it follows that y, being always larger than
‘—;—%, increases monotonically with & (in the interval studied). Therefore, one may ask what
happens for & > 81, and, in particular, what happens in the case b —» co, when the CB
fractal dimension approaches the Euclidean value 2. We investigate the matter related to

this question in the next section.

4. The finite-size scaling analysis

If we want to know the behaviour of y for large values of b, we cannot avoid having to
find out the asymptotic behaviour of v. Indeed, according to (6), in order to determing y
we need to study both A; and A2 when b — oc, which we are going to do. But, knowing
the behaviour of A;, one can learn the behaviour of v through (2).

We start with an analysis of the RG transformations (1) for large b. First, we observe
that it was established [6] that the probability of the H type of SAW (see figure 1) vanishes
for large b, which means that the function H'" can be neglected. For the remaining two
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functions, we write the following short expressions:

Fi+D = fb(!,—(")| G(’)) (8)
G+ = gb(F[l’), G(f)) (9)

and introduce two new quantities ef.,f) and eg) through

FO = Fexp(e?) (10}
G = G exped). (1)

The new quantities should measure closeness to the fixed point (Fg,, G7,) which is pertinent
to the case b — oo (the corresponding critical fugacity we denote by x2 ). For the sake of
simplicity, we shall omit the superscript r in writing the quantities e and €. To assess
the asymptotic behaviour of (8) and (9), it is useful to recall their analogy with the corner-
spin—corner-spin correlation functions (see figure 1) of the #-vector model (for n = 0). For
this reason we assume, in the spirit of the FSS method [4], the two scaling forms

FOHD %exp(w(epbi/u, ecb)) (12)
G = %exp(%(érb””, ecb'")) -

which shouid be valid for large b and small € and €. Here Ky and K are constants, while
g and ¢ are the scaling functions. The quantity @ is the critical exponent which governs
the power-law decay of the correlation functions with distance. For large &, assuming the
case of a wedge of the Euclidean square lattice with opening angle o equal to m/2, one
may accept

a= (14)

wIltn

which can be inferred from the previous studies of Saws on the Euclidean lattices” wedges
[7,8].

The scaling functions v and Y are not known for arbitrary . However, it is possible
to deduce their forms for large b. Actually, for large b the inequality x; > xX, holds
{because the lattice connectivity increases with increasing &). For x > xJ,, the functions
F&+) and G+, siven by (12) and (13), should vary as exp(b?) [9], which implies the
following form for the scaling functions:

Yr(yr. ¥6) % K\ y¥ + Kay¥ (15)
Ve (rr, Yo) & Kay¥ + KoyZ (16)

where K; (i = 1,2,3 and 4) are some constants. Knowing the last two expressions, we
proceed to find the fixed point of the RG transformations (12) and (13). To this end, we
combine the latter two with (10) and (11), which yields

alnb % Yr(yr, ¥5) (17)
alnb ~ ye (¥, ¥5) - (18)
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Inserting (15) and (16) in the above two formulae (with y; = ekb'/" and y§ = e£b'") we
find

€x & (Qralnb) /Pyl (19)
e~ (Qgalnd) @y (20

where Jr = (K4 — K2)/(K\Ka — K2K3) and Qg = (K) — K3)/(K( K3 — K3 K3). The
requisite eigenvalue A; should be determined by solving the equation

aF(r-{—l) 3 F(r+1) *
BF(r) M aG[r)
aG[r-i-l) 86(?-{-1}

9F» G

=0 21)

1

where the asterisk means that all derivatives should be taken at the fixed point given by
(19) and (20). Thus we find

Mi(b) & 0BV (g In by P =MD (22)
where Q is a constant. Using (2) and (22) we get the formula for the critical exponent

3 3 Inlnb
) = e

which is asymptotically correct for large 5. One can notice that v acquires the Euclidean
value % for b — co (with the negative first correction term). This result was anticipated
in [6], on the grounds of predictions given in [4]. In fact, one could have reached the
same result (23) in an easier way, that is, by assuming that the scaling functions (15) and
(16) are equal, which would make the whole approach identical to the approach of [4].
However, such an assumption would imply that the coefficients A,(, j, k) and Bp{i, j, k)
which appear in (1) are mutually proportional (for large &), which at the present stage lacks
numerical and physical evidence. Anyhow, we can now conclude that v has the same type
of behaviour for the three different (G, PR, and CB) families of fractals.

We proceed to find asymptotic behaviour of the critical exponent . For this purpose,
we first need {o determine asymptotic behaviour for the eigenvalue Az, which should be
accomplished by solving (7) for large &. In the case of large £, it is known (4,8, 10] that
the three-leg vertex partition functions /) and K can be neglected in comparison with
the one-leg vertex partition function /", on which grounds (7) can be reduced to

(23)

ia(BY = g (Fy, G b) (24}
In the spirit of the FS§ approach, and in the analogy with (12) and (13), we assume
ar1{Flexp(er), Gaexplec), b) ~ Koexp(W,(erb'”, égb'")) (25)

where K is a constant, ¢ is an appropriate critical exponent, and v, is the scaling function.
The specific value of ¢ can be determined by an analysis of the polynomial a;; as a function
of the fugacity x. For x < x%, {(that is, for er < 0 and g < 0) the polynomial a;; diverges
according to the power law

ap ~ (% — %) 7 (26)
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which springs from the study [7] of SAWs confined in the Euclidean wedges (taking into
account that in the case under study the opening angle « is 7/2). The scaling assumption
(25), in conjunction with the power law (26), can be valid if

Velerh' e6b™) = =3 In(epb” + egb'") 7

and accordingly

&
i
[

o+
00|

(28)

In the next step, we analyse ay; for x > x;, (for the densed phase) so as to learn A3(5)
for large b. In this case the ratio of a;;/F¢*+D should be a definite function of # [4,8].
More specifically, one can expect

ari(Faexpler), G expléc), b)
FirtD(Frexpler), G expleg), )

~ BR(x — x%) (29)

where the expenent e depends on the opening angle ¢« of the Euclidean wedge, and # is a
function which does not depend of &. For o = 7 /2, following the work of Duplantier and
Saleur [8), we have found

W= % - (30)
On the other hand, (29} together with (12} and (25) imply
Val¥r, ¥6) = ¥r(0r, Yo) = I (Cyf ™™ + Coyg ™) 31

where C; and C; are constants. Hence, for the fixed-point values {19} and (20) we get
Inha(b) = (a+ c)Inb+ H(w—a—c)inlnb. (32)

Finally, using (6), (22) and (32), we obtain

Inl
yB)=2w(a+c+ D+vw—a—c—Qu-1)a+tec—1) rl‘n';b (33)
and, using the specific findings, we reach the asympiotic expression
103 219ininb
by = — - — (34)

32 128 Iné

which shows the non-Euclidean value (% VErsus %) for the critical exponent y in the

limit & — oq, when the fractal dimension dr acquires the Euclidean value 2.
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Figure 2. The exact (open squares) and MCrG (full squares) results for the critical exponent y
of saws on the ¢ fractals (the mark x denotes the b = 3 exact value for the X fractal). The
horizontal broken line represents the Euclidean value ¢ = g‘ﬁ. This figure vividly demonstrates
that the data from table i increases monotonically with b, always being larger than the Euclidean

value 3 3 In addition, one can see that it would be rather difficult to extrapolate straightforwardly

the emtmg data to the asymptotic value %'3- {for & — o0} which has been obtained by an

independent theoretical method (see section 4).

5. Discussion and conclusions

The initial objective of this work was to obtain values for the critical exponent  of SAWs
on the fractals which belong to the CB and X families of fractals. This objective has been
accomplished by applying the exact RG method for the first three members (b = 3,5 and
7) of the families, and by applying the MCRG method for a set of fractals with 5 £ & < 81
The results obtained are given in table |, and here we depict ¥ as a ’r‘unction of I/b in
figure 2. One can observe that ¥, being always larger that the Buclidean value 2 5 increases
monotonically with &, and one may wonder what happens for > 81. We have answered this
question via the £S5 approach, which led us to the conclusion that v — &1 when & — 00
(see formula (34)). Very similar behaviour of y, and the same Jimiting vaiue of 'f:’, has
been found in the case of the PF family of fractals [3]. This equality of the limiting values
should not be surprising since in both cases the b = oo fractal can be related to the wedge
of the square lattice with the opening angle & = x/2 {7, 10]. Incidentally, results for the pF
fractals show that one can hardly expect a well defined function of dimension (exclusively}
which interpolates resuits for critical exponents of 5aws on the Euclidean lattices and on
fractal lattices [11). In fact, aif pr fractals (with the odd integer enumerator 3 € £ < 00)
have the same fractal dimension d; = 2 and separate values of ¥ (and v) for each b.

In fulfilling our task of calculating v we have found it possible to answer the appealing
question [6] about the large-b behaviour of the critical exponent v for the CB fractals. Within
the framework of the FSS approach, we have been able to learn that v tends to the Enclidean

value from below, when & — oo (see formula (23)). This finding, together with the
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. Figure 3, The graphical representation of
. , . , \ the results given in table 1, depicted so as
o 1 2 ] ) 5 to disclose that A3/b* should be a linear
Inb function of In# for large b,

previous results for v (in the interval 3 € b £ 81) [6], which showed that v decreases
3

monotonically (passing through the value 3 at b ~ 25}, imply that v, as a function of b,
should have a minimum at some finite & > 81. Therefore, aithough the results for finite b
and the b — oo prediction are obtained theoretically by different approaches, we can try to
locate the position of the minimum using (22), according to which A3/5* should be a linear
function of Ind, for large . Indeed, the corresponding plot of our data (see table 1) gives
the graph presented in figure 3, from which one can notice that the linear behaviour can be
expected for & > 27. Therefore, making the least-squares fit to our data for b > 27, we
have found A3/b* = 0.65675Inb — 1.17595, which upon inserting in (2) brings about an
approximate function v{b) with the minimum vy, =2 0.718 35 located at by, = 1750, This
estimate for byin is of the same order of magnitude as the one by, = 1800 found, using
phenomenological formulae for v, in the case of the PF fractals [3]. These values of b are
beyond the reach of the MCRG method (implemented on present-day computers) and further
analysis of the location of vy, requires new insights,

We have already pointed out that this work completes and welds together a set of related
studies [2-6, 12, 13] of sAWs on four different families of fractals, and in this spirit we can
offer the following conclusions. The critical exponent y turns out to be always larger

than the Buclidean value 22, and, as a function of the fractal scaling factor &, increases

32°
monotonically with &. In the case of the SG family of fractals y ~» 132 when & — o0,

32
whereas for the other three families (PF, CB, and X} y — % when b — oc. On the contrary,
the critical exponent v, for all four families of fractals, tends to the Euclidean value % (from

below), when the fractal dimensions approach the Euclidean value 2, that is, in the limit
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b — oc. Besides, in all four cases v is a non-monotonic function of b, so that it crosses the
Euclidean value 3 for a finite &y, 2 26 [6], which appears to be the first universal element
in the critical behaviour of $Aws on fractals. From the practical point of view, this means
that there is a borderline in the homogeneity of fractals (embedded in the two-dimensional
Euclidean space), such that for less homogeneous fractals v is larger than the Euclidean
value 2, while for more homogencous fractals v lies below 2. The first possibility, v > 3,
seems to be widely accepted, whereas the second, v < %, is less appreciated, although it
has been observed in other investigations, both numerically [14] and experimentally [15].
The particular position of the apparently universal borderline, &y, ~ 26, is enhanced by the
results reported in the present work. Indeed, one can notice, upon comparison with the
results found previously [2,3], that for & > 25 (and up to & = 81) y acquires values that
are, within the error bars, almost the same for the four families of fractals.
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Appendix.

Here we present an analysis that in its final stage vindicates the central formula (6). We
start with examining the singular behaviour of the generating function (5} for the values
x = x* 8, where § is a small positive number. To this end we linearize the RG
transformations (1) at the non-trivial fixed point

aF[r+l) aF(r+l) aF(r+E) *
aFv G 8H®"

F(r-i-]) — F* (rb1 F(r) _ F* )

G gGUt)  Girth
Grth—_g* | = 7 5 f-"] G(r) -G (AI)
B _ e aFv acYy oH HO _ g

aH(r+1) aH(r+1) aHfr+1)

aF agn ae®"
which can be written in the condensed form
w1 = Ty (A2)

We assume that the vicinity of the fixed point is reflected in the smallness of the u
intensity

lu < e x1. (A3)

Assuming that e, is the eigenvector associated with the largest eigenvalue A; of
the matrix T, we shall make the approximation u"?) =~ «(r,8)e;, so that (A2) implies
a(r,8) = AMa(0,4) and

ul ~ (0, §))\ e (A4)
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Figure Al. The schematic argumcnt that the statistical weight of saws of the type OV*+1,
which contain the Jower-level walks of the type O, is smailer than the statistical weight of
those walks which stem from the Saws of the type H%*! by splitting the #Y? walks, that is,
b3). < BHCFN/3H" . The argument invokes the fact that the O¥*! walks of interest can be
obtained from a subset of all walks of the type H¢*" which contain the #? walks. Finally,
ane should abserve that there are splittings of the H%) walks (the A case) which contribute
to the O+ get, and that there are those (the B case) which do not make the appropriate
contribution,

where (0, 8) is proportional to &, that is, @(0, §) ~ (x* — x). The requirement that (A3)
and the relation (A4) can be valid for r < rp, where rg is given by

_ Ine
- ln2.1

1o {A5)
with ¢’ being equal to ¢/(0, §). Knowing the counter value rg, we can proceed further by
calculating all polynomials which appear in (3) and (4), at the fixed point (F*, G*, H*) for
r £ rg, and at the trivial fixed point (0,0,0) for r > ro.

On the grounds of the foregoing conclusion, we split our analysis of the recursion
relations (3)~(5) into two parts. Far r £ rp, equation (3) becomes

FlrEl) — a;"r[[-”) -+ abj(") 4+ a;KK(’) (AB)
JeED = a:",,["’ +at, I+ &y K0 (A7)
oY — a}'”!(') +a’;“.f{’) + a*KKK(") (A8)

whose solution we search in the form
10~ K2 JO KA K~ Kb (A9)

where K, K;, and Ky, are some constants, while Ay is the largest solution of (7). If the
solutions of the type (A9) exist, relation (4), for ¥ = O, takes the form

oW~k (02 + k" (831) (AL0)

where K’ and X" are also constants. The value of 5] is smailer than dHU*1/a B (see
figure Al). On the other hand, in the course of our work numerical evidence has been
acquired that 8 H¥+1 /d H") < A2, so that, for large r, (A10) reduces to

0" ~ Kgiy . (A1)
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In the same spirit, certain coefficients in the recursion relations that follow from (4), upon
ingerting (AG)-(A8) and (All), can be related to the partial derivatives of the partition
functions (1), yielding

PAARESPY S Ny Tl (A12)

where 147 is the vector column comprised of LY}, M), and N, while k is also the vector
column whose elements are K;, Ky, and Ky, and, finally, T' is the matrix

3F{r+l) gFlrt+t} ap(r+l) *

gFv) g™ aH"
. Telad) s+l agr+n
T=| Fo 3G® 3H™ (a13)

1 aH(r'!-l} 1 aH(r+[] aH(l’-C'l)
2 9FD 2 36" 9HT
The matrix T has the same eigenvalues as the matrix T, which means that in (Al12) we can

neglect the second term (because A; < A2 ; see table 1). Consequently, for r < rg, we can
write

L& = K02 MO~ K25 N o K303 (Al4)

where K|, K2, and K5, are constants. In this way we have completed the analysis of the
RG transformations for r < ro.
For r > ry, the set of the RG transformations becomes simplified
192Ky LO= KA MO Kle
(A15)
WALR It I ¥ () RENY, T I

due to the fact that only the polynomials a;;, bF,, and &%, which appear in (3) and (4),
have non-zero constant terms. In the end, we insert (A9), (Al11), (A14} and (A15), into (5),
and retaining the largest term of the sum we obtain

2 0\
C(x) ~( L ) (A16)

B2 +1
which together with (AS5) gives (6).
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